How to Evaluate Transformation Based Cancelable Biometric Systems? R. Belguechi, E. Cherrier and C. Rosenberger GREYC Research Lab, ENSICAEN - CNRS – University of Caen, FRANCE NIST International Biometric Performance Testing Conference 2012 #### Cancelable biometric systems - Privacy by design biometric systems, - Two approaches: crypto-biometrics and transformation based, - Pionner article : RATHA et al., 2001, - BioHashing, a popular algorithm : ТЕОН et al., 2004, - Difficult to evaluate their security. #### Cancelable biometric systems - Privacy by design biometric systems, - Two approaches: crypto-biometrics and transformation based, - Pionner article : RATHA et al., 2001, - BioHashing, a popular algorithm: TEOH et al., 2004, - Difficult to evaluate their security. #### Contributions - \bullet Proposition of evaluation criteria for privacy and security compliance \Rightarrow extension of $\rm NAGAR$ et al., 2010, - Illustrations on fingerprints and finger knuckle prints, - Definition of a Matlab toolbox for the evaluation of BioHashing based cancelable systems - BioHashing algorithm - 2 Evaluation framework - 3 Experimental results - 4 Conclusion & perspectives - BioHashing algorithm - 2 Evaluation framework - 3 Experimental results - 4 Conclusion & perspectives FIGURE 1: General principle of the BioHashing algorithm ## BioHashing algorithm #### Properties' - Given the BioCode, the biometric raw data cannot be retrieved, - Only the BioCode is stored, - If the BioCode is intercepted, a new one can be generated, - An individual can have many BioCodes for different applications, - The BioHashing process improves performances. #### **Properties** - Given the BioCode, the biometric raw data cannot be retrieved, - Only the BioCode is stored, - If the BioCode is intercepted, a new one can be generated, - An individual can have many BioCodes for different applications, - The BioHashing process improves performances. ## Open questions for an attacker - Is it possible to generate an admissible BioCode without the seed? - Can we predict a BioCode given previous realizations? - How different are two BioCodes generated from the same FKPcode? ⇒ Definition of an evaluation framework. - BioHashing algorithm - 2 Evaluation framework - Overview - Notations - Efficiency - Non-invertibility - Diversity - 3 Experimental results - 4 Conclusion & perspectives #### Security properties - **Performance**: the template protection shall not deteriorate the performance of the original biometric system, - Revocability or renewability: it should be possible to revoke a biometric template. - Non-invertibility or irreversibility: from the transformed data, it should not be possible to obtain enough information on the original biometric data to forge a fake biometric template, - Diversity or unlinkability: it should be possible to generate different biocodes for multiple applications, and no information should be deduced from their different realizations. - \Rightarrow Definition of 8 evaluation criteria based on NAGAR et al., 2010 ## Verification process $$R_{z} = 1_{\{D_{T}(f(b_{z}, K_{z}), f(b'_{z}, K_{z})) \le \epsilon_{T}\}}$$ (1) #### Where: - R_z: decision result for the verification of user z using the cancelable system, - D_T : distance function in the transformed domain, - f : the feature transformation function, - ullet b_z , b_z' represent the template and query biometric features of user z, - K_z : set of transformation parameters, - \bullet ϵ_T : decision threshold. #### A_1 evaluation criterion $$A_1 = 1 - \frac{\text{AUC(FAR}_{\text{T}}, \text{FRR}_{\text{T}})}{\text{AUC(FAR}_{\text{O}}, \text{FRR}_{\text{O}})}$$ (2) #### where: - AUC : area under the ROC curve, - FRR_O is the false reject rate and FAR_O is the false accept rate of the original biometric system (without any template protection), - FRR_T is the false reject rate and FAR_T is the false accept rate of the cancelable biometric system (with template protection). if $A_1 > 0$, the protection of the template improves the performance. #### A_2 to A_5 evaluation criteria $$FAR_A(\epsilon_T) = P(D_T(f(b_z, K_z), A_z) \le \epsilon_T)$$ (3) #### Where: - $FAR_A(\epsilon_T)$: probability of a successful attack by the impostor for the threshold ϵ_T . - ullet A_z : generated biocode by the impostor with different methods, - We can consider $\epsilon_T = \epsilon_{EER_T}$ (ϵ_{EER_T} : threshold to have the EER functionning point of the cancelable biometric system). • Zero effort attack (A_2) : An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x, K_x)$, - Zero effort attack (A_2) : An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x', K_x)$, - Brute force attack (A_3) : An impostor tries to be authenticated by trying different random values of $A: A_z = A$, - Zero effort attack (A_2) : - An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x', K_x)$, - Brute force attack (A_3) : An impostor tries to be authenticated by trying different random values of $A: A_z = A$, - Stolen token attack (A_4) : An impostor has obtained the token K_z of the genuine user z and tries different random values of b to generate : $A_z = f(b, K_z)$, - Zero effort attack (A_2) : An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x', K_x)$, - Brute force attack (A_3) : An impostor tries to be authenticated by trying different random values of $A: A_z = A$, - Stolen token attack (A₄): An impostor has obtained the token K_z of the genuine user z and tries different random values of b to generate: A_z = f(b, K_z), - Stolen biometric data attack (A_5) : An impostor knows $\acute{b_z}$ and tries different random numbers K to generate : $A_z = f(\acute{b_z}, K)$. #### A_6 evaluation criterion $$A_6 = \frac{1}{N} \sum_{z} \sum_{j=1}^{M} \max(I(f(b_z, K_z), f(b_z^j, K_z)))$$ $$I(X,Y) = \sum_{x} \sum_{y} P(x,y) \log(\frac{P(x,y)}{P(x)P(y)})$$ #### Where: - ullet b_z : denotes the reference of the individual z in the database, - b_z^j : denotes the j^{th} test data of the individual z in the database, - N: the number of individuals in the database, - *M* : the number of generated biocodes for each individual, - P : the estimation of the probability. #### A_7 to A_8 evaluation criteria For each template of the genuine user : - Generation of Q biocodes $B_z = \{f(b_z, K_z^1), ..., f(b_z, K_z^Q)\}$ for user z, - Prediction of a possible biocode value by setting the most probable value of each bit given B_z , - Computation of equation (2). - \Rightarrow A_7 value for Q=3 and A_8 for Q=11 #### A_7 to A_8 evaluation criteria For each template of the genuine user : - Generation of Q biocodes $B_z = \{f(b_z, K_z^1), ..., f(b_z, K_z^Q)\}$ for user z, - Prediction of a possible biocode value by setting the most probable value of each bit given B_z , - Computation of equation (2). - \Rightarrow A_7 value for Q=3 and A_8 for Q=11 ## Summary The security and robustness of a cancelable biometric system are characterized by an eight-dimensional vector $(A_i, i = 1, ..., 8)$ - BioHashing algorithm - 2 Evaluation framework - Experimental results - Protocol - Robustness to attacks - Summary - 4 Conclusion & perspectives #### Benchmark databases - PolyU FKP Database LIN ZHANG, 2009 : 4 fingers of 165 volunteers, each individual has provided 12 images, - FVC2002 benchmark MAIO et al., 2002 (dB3): composed of 8 fingerprints (resolution 355 x 390 pixels) for 100 individuals. #### Benchmark databases - PolyU FKP Database LIN ZHANG, 2009 : 4 fingers of 165 volunteers, each individual has provided 12 images, - FVC2002 benchmark MAIO et al., 2002 (dB3): composed of 8 fingerprints (resolution 355 x 390 pixels) for 100 individuals. ## Feature computation Gabor descriptors Size: 128 parameters (16 scales, 8 orientations) Computation: single enrolment, Hamming distance verification ## Robustness to attacks : fingerprint case FIGURE 2: Analysis on fingerprints (FVC 2002) FIGURE 3: Analysis on finger knuckle prints (POLY FKP) ## **Synthesis** - Evaluation is done on a functionning point, - The more a priori information the attacker knows, the more the attack is efficient, - It is possible to compare attacks (same algorithm and biometric data). | Modalities | A_1 | A_2 | <i>A</i> ₃ | A_4 | A_5 | A_6 | A ₇ | A ₈ | |-------------|-------|-------|-----------------------|-------|-------|-------|----------------|----------------| | Fingerprint | 1.0 | 0 | 0 | 0 | 0 | 0.44 | 0 | 0 | | FKP | 0.10 | 0.25 | 0.15 | 0.54 | 0.25 | 0.58 | 0.51 | 0.59 | TABLE 1: Evaluation results of the cancelable biometric systems. - BioHashing algorithm - 2 Evaluation framework - 3 Experimental results - 4 Conclusion & perspectives #### Contributions - Evaluation framework for cancelable biometric systems, - Simulation of different attacks, - Illustration on a FKP and fingerprint generic biometric system. #### Contributions - Evaluation framework for cancelable biometric systems, - Simulation of different attacks, - Illustration on a FKP and fingerprint generic biometric system. ## Perspectives - More complex attacks - ⇒ generation of the biocode based on the listening attack - ⇒ impact of the random generator http://www.epaymentbiometrics.ensicaen.fr/